
A Comprehensive Solution to the
XML-to-Relational Mapping Problem

Sihem Amer-Yahia
AT&T Labs – Research

180 Park Ave
Florham Park, NJ 07932, USA

sihem@research.att.com

Fang Du
OGI/OHSU

20000 NW Walker Rd
Beaverton, OR 97006, USA

fangdu@cse.ogi.edu

Juliana Freire
∗

OGI/OHSU
20000 NW Walker Rd

Beaverton, OR 97006, USA

juliana@cse.ogi.edu

ABSTRACT
The use of relational database management systems (RDBMSs) to
store and query XML data has attracted considerable interest with
a view to leveraging their powerful and reliable data management
services. Due to the mismatch between the relational and XML
data models, it is necessary to first shred and load the XML data
into relational tables, and then translate XML queries over the orig-
inal data into equivalent SQL queries over the mapped tables. Al-
though there is a rich literature on XML-relational storage, none of
the existing solutions addresses all the storage problems in a sin-
gle framework. Works on mapping strategies often have little or
no details about query translation, and proposals for query trans-
lation often target a specific mapping strategy. XML-storage solu-
tions provided by RDBMS also have limitations. Notably, they are
tied to a specific backend and use proprietary mapping languages,
which not only may require a steep learning curve but often are
unable to express certain desirable mappings.

In order to address these limitations, we developedShreX, a
XML-to-relational mapping framework and system that provides
the first comprehensive solution to the relational storage of XML
data. Mappings inShreXare defined through annotations to an
XML Schema. The use of XML Schema simplifies the mapping
process, since it does not require users to master a new specialized
mapping language. The use of annotations allows mapping choices
to be combined in many different ways. As a result,ShreXnot only
supports all the mapping strategies proposed in the literature, but
also new useful strategies that had not been considered previously.
ShreXprovides generic (and automatic) document shredding and
query translation capabilities, and it is also portable — its mapping
specifications are independent of the database backend.

Categories and Subject Descriptors
H.2 [Database Management]: Languages

∗Current address: School of Computing – University of Utah, ju-
liana@cs.utah.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’04, November 12–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-978-0/04/0011 ...$5.00.

General Terms
Management

Keywords
XML Storage, Mapping techniques, Relational Databases, XML
Shredding

1. INTRODUCTION
As applications manipulate an increasing volume of XML data,

there is a growing need for reliable systems to store and provide
efficient access to these data. The use of relational database systems
for this purpose has attracted considerable interest with a view to
leveraging their powerful and reliable data management services.

In order to store an XML document in a relational database, the
tree-structure of the XML document must first be mapped into an
equivalent, flat, relational schema. XML documents are then shred-
ded and loaded into the mapped tables. Finally, at runtime, XML
queries are translated into SQL, submitted to the RDMBS, and the
results are then translated into XML.

There is a rich literature addressing the issue of managing XML
documents in relational backends. Several mapping strategies (e.g.,
[4, 9, 12, 22, 21]) and query translation algorithms (see [16] for a
survey) have been proposed. In addition, support for XML stor-
age is already available in most commercial RDBMSs. However,
none of these solutions addresses all the storage problems in a sin-
gle framework. Works on mapping strategies often have little or no
details about query translation [16]; and proposals for query trans-
lation often target a specific and fixed mapping strategy. In addi-
tion, many of the available mapping solutions hard-code mapping
choices [22]. As we discussed in [4], a given mapping strategy is
unlikely to be the best choice for all applications — the ideal is to
customize a mapping based on an application’s characteristics,i.e.,
its data and access patterns. Thus, hard-coding mapping choices
can result in inefficient mappings. Although some of the solutions
proposed by relational vendors do provide flexible mechanisms to
define mappings, these solutions are proprietary and tied to a spe-
cific relational backend. This is a serious limitation. Since XML
is widely used for data exchange, it is quite plausible that applica-
tions may need to store a given document (or different views of a
document) in distinct database backends. Having to define distinct
mappings, using different proprietary interfaces, is time-consuming
and can add substantial costs to application development and main-
tenance.

ShreX(Shredding XML) [11] is a freely available system1 that
addresses many of the limitations of existing mapping solutions.

1ShreXis available at http://www.cse.ogi.edu/ShreX.

To the best of our knowledge,ShreXis the first system to provide
a comprehensive solution to the relational storage of XML data.
While designingShreX, our goal was to build a system that was:
flexible, i.e.,able to support a wide range of mapping strategies so
that users could choose, depending on their application, how to map
the XML data into relations;portable across multiple RDBMSs
i.e., a given mapping specification can be used for any database
backend;extensible i.e.,allow the definition of new mappings; and
easy-to-use, even for non-experts.

A key component ofShreXis its mapping definition framework.
In ShreX, an XML-to-relational mapping is specified through an-
notations over an XML schema. In contrast to specialized map-
ping languages, which may require a steep learning curve, the use
of XML Schema makes it easy to define mappings. Another ad-
vantage of using XML Schema is that mapping definitions can be
validatedfor free.

Since annotations can be combined in many different ways,ShreX
is able to express a wide range of mappings. Besides mapping
strategies proposed in the literature and strategies supported by
database vendors, new useful strategies that have not been previ-
ously considered can be easily defined inShreX.

ShreXalso provides generic (mapping-independent) functions
for document shredding and query translation. This is made possi-
ble by an API which provides access to the mapping information.
The use of annotations over an XML schema and an API to ac-
cess mapping information makes the system extensible, since new
annotations and new API functions can be added to support new
mapping choices.
Outline and contributions. In this paper, we describe theShreX
system, its design and features. In Section 2, we give an overview
of existing mapping techniques, and identify important require-
ments which guided our design. We present the architecture of
ShreXin Section 3, where we describe the mapping framework and
the implementation of the current prototype.

2. OVERVIEW OF MAPPING TECHNIQUES
AND SYSTEMS

There is a substantial body of work on using relational databases
to store XML documents. The various approaches differ in which
meta-data they use (i.e.,schema or schemaless); how the relational
configuration is generated; and which information is preserved on
the relational side. Table 1 summarizes these differences, which
are discussed below. In order to illustrate some of the techniques,
we use the following example.

Example 2.1 (Mapping show data). FakeFilm.com plans
to deploy a new Web site that publishes information about movies
and TV shows. Since they use a relational database, they need to
map the existing show data that is available in XML from the Inter-
net Movie Database (IMDB) into their database. An excerpt of the
IMDB schema and a sample document are shown in Figures 1 and
2, respectively. The sample schema describes information about
shows, where aSHOWhas aTITLE , a YEAR, zero to tenAKAs (alter-
native titles), and a set ofREVIEWs. ASHOWadditionally has infor-
mation about itsBOXOFFICEandVIDEOSALES, if it is a movie, or
information aboutSEASONSandEPISODESs, if it is a TV show. The
document illustrates the variability that the show schema allows.

Schema-aware versus schema-oblivious.Mapping strategies can
be broadly classified into schema-aware and schema-oblivious. Tech-
niques which store XML documents ingeneric(pre-defined) rela-
tional tables are called schema-oblivious. One of the first proposals

<element name="IMDB" type=’’imdb’’>
<element name="SHOW">

<sequence>
<element name="TITLE" type="string"/>
<element name="YEAR" type="integer"/>
<element name="AKA" type="string"

minOccurs="0" maxOccurs="10"/>
<element name="REVIEW" type="ANYTYPE"

minOccurs="0" maxOccurs="unbounded"/>
<choice>

<sequence>
<element name="BOXOFFICE" type="integer"/>
<element name="VIDEOSALES" type="integer"/>

</sequence>
<sequence>

<element name="SEASONS" type="integer"/>
<element name="EPISODE" type="ANYTYPE"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>

</choice>
</sequence>

</element>
</element>

Figure 1: Excerpt of IMDB schema

<IMDB>
<SHOW>

<TITLE>Fugitive, The</TITLE>
<YEAR>1993</YEAR>
<AKA>Auf der Flucht</AKA>
<AKA>Fuggitivo, Il</AKA>
<REVIEW>

<SUNTIMES>
<REVIEWER>Roger Ebert</REVIEWER>
<RATING>Two thumbs up!</RATING>
<COMMENT>

This is a fun action movie,
Harrison Ford at his best. </COMMENT>

</SUNTIMES>
</REVIEW>
<REVIEW>

<NYT>
The standard Hollywood summer
movie strikes back. </NYT>

</REVIEW>
<BOX_OFFICE>183,752,965</BOX_OFFICE>
<VIDEO_SALES>72,450,220</VIDEO_SALES>

</SHOW>

<SHOW>
<TITLE>X Files, The</TITLE>
<YEAR>1994</YEAR>
<AKA>Akte X - Die unheimlichen

Fälle des FBI</AKA>
<AKA>Aux frontieres du Reel</AKA>
<SEASONS> 10 </SEASONS>
<EPISODE>

<NAME>Ghost in the Machine</NAME>
<GUEST_DIRECTOR> Jerrold Freedman </GUEST_DIRECTOR>

</EPISODE>
<EPISODE>

<NAME>Fallen Angel</NAME>
<GUEST_DIRECTOR> Larry Shaw </GUEST_DIRECTOr>

</EPISODE>
</SHOW>
....

</IMDB>

Figure 2: Sample IMDB document

Techniques Schema-aware Cost-based Constraint-
preserving

Order-
preserving

Automatic-
generated

Backend

Stored [9] No No No Yes Automatic Relational
Edge [13] No No No Yes Automatic Relational
Interval [8] No No No Yes Automatic Relational
XRel [27] No No No Yes Automatic Relational
[23] No No No Yes Automatic Relational
[22] Yes No No No Automatic Relational
[20] Yes No No No Automatic Object-

Relational
[17] [6] Yes No Yes No Automatic Relational
LegoDB [4] Yes Yes No No Automatic Relational
Oracle XML
DB [16]

Yes No No Yes Automatic and
customization

Object-
Relational

DB2 XML Ex-
tender [14]

Yes No No Yes Manual Relational

MS SQL
Server [18]

Schema-aware
and Schema-
oblivious

No No Yes Automatic and
Customization

Relational

Table 1: Classification of the existing XML-to-Relational Storage Techniques

Source Ordinal Tag Flag Target
1 1 IMDB Ref 2
2 1 SHOW Ref 3
3 1 TITLE String 4

Node Value
4 Fugitive, The

Figure 3: Edge-based Relational Schema Design

for mapping XML documents was the Edge scheme [12], a schema-
oblivious approach that explicitly stores all the edges in a document
tree. Figure 3 illustrates a fragment of the relational tables obtained
by applying the Edge mapping to the XML document given in 2.
Other schema-oblivious techniques include [8, 27].

Departing from generic mappings, several specialized strategies
have been proposed which make use of schema information to gen-
erate efficient mappings. Whereas Edge typically requires many
joins for navigating and/or reconstructing the document, Shanmu-
gasundaram et al [22] describe three specialized strategies which
use schema information to minimize data fragmentation byinlin-
ing, whenever possible, the content of certain elements as columns
in the relation that represents their parents. Figure 4(a) is an ex-
ample of a relational configuration obtained by the shared inlining
strategy proposed in [22].
Mapping primitives. Several techniques have been proposed which
define a set of rules to map XML Schema primitives into their re-
lational counterparts. For example, shared inlining specifies that
elements which have multiple occurrences must be mapped into ta-
bles, whereas elements with a single occurrence should be mapped
as a column of the table corresponding to its parent element. The
LegoDB system [4] exploits a richer set of mapping primitives. In
addition to parent-child relationships, LegoDB also also takes into
account additional schema constructs such as choice and repetition,
and it allows multiple mapping functions for a given construct. For
example, besides the option to create a table for a set-valued ele-
ment, LegoDB also considers inlining one or more occurrences of
the repeated element within its parent (through the repetition split
transformation). Figure 4 illustrates some of the relational config-
urations that can be generated by LegoDB for the schema of Fig-
ure 1. Note that while most techniques consider primitives that map
XML constructs to pure relational systems, some [15, 20] leverage
object-relational features of relational systems.
Fixed versus cost-based schema design.Most mapping strategies

are fixed,i.e., they fix the mapping function (seee.g.,[22, 12]). In
contrast, LegoDB [4, 19] takes a cost-based approach to derive a
mapping that best suits a given application — characterized by a
schema, query workload and document samples. LegoDB uses the
information in the XML schema to derive several possible mapping
alternatives, and selects the one which leads to the lowest cost for
executing a given query workload over sample documents.
Preserving order and structure. A simple way to capture par-
ent/child relationships in an XML document is to assign a unique
identifier to each element, and have a foreign key in the child record
that points to the identifier of its parent. For example, in Fig-
ure 4(a), a foreign keyparent Show is created inTABLE Review
which refers to a record inTABLE Show. Sibling order can be cap-
tured using an ordinal value (that can be the key of the element
itself). We refer to this technique as KFO for Key, Foreign key and
Ordinal. KFO is used in a number of mapping strategies, including
Edge [12], as Figure 3 illustrates.

Different numbering schemes are possible for assigning ids to
elements. Examples include Dewey and interval encoding. The
Dewey Decimal Classification was originally developed for gen-
eral knowledge classification [10]. This encoding records, at each
node, the path from the node to the document root by concatenat-
ing the identifiers of the nodes along that path. Thus, the property
of Dewey is that the identifier of a node contains its parent node
identifier and the level at which the node is in the document tree.
In interval encoding, a unique{start, end} interval identifies each
node in the document tree. This interval can be generated in mul-
tiple ways. The most common method is to create a unique iden-
tifier, start, for each node in a preorder traversal of the document
tree, and a unique identifier,end, in a postorder traversal. A nice
property of this encoding is that the interval of a node is included
in the interval of its parent node. In order to distinguish children
from descendants, a level number is recorded with each node. This
technique is used in [8], and is illustrated in Figure 5.

Schema-aware techniques [4, 6, 17, 20, 22] have focused on
structural and constraint mapping, often ignoring the order among
elements. Because these techniques ignore order, the resulting map-
pings arelossy. For example, the mapping strategies in [22] do not
allow mapped documents to be faithfully reconstructed.2

2Note that that although [22] does keep unique keys for elements
and ordinals for siblings, order information may be lost during the
DTD simplification process.

TABLE Show
(Show_id INT,

title STRING,
year INT,
box_office INT,
video_sales INT,
seasons INT)

TABLE Review
(Reviews_id INT,

reviews STRING,
parent_Show INT)

TABLE Episode
(Episode_id INT,

episode STRING)

....

TABLE Show
(Show_id INT,

title STRING,
year INT,
box_office INT,
video_sales INT,
seasons INT)

TABLE NYT_Reviews
(Reviews_id INT,

review STRING,
parent_Show INT)

TABLE Reviews
(Reviews_id INT,

tilde STRING,
review STRING,
parent_Show INT)

TABLE Episode
(Episode_id INT,

episode STRING)
....

TABLE Movie_Show
(Movie_Show_id INT,

title STRING,
year INT,
box_office INT,
video_sales INT)

TABLE TV_Show
(TV_Show_id INT,

type STRING,
title STRING,
year INT,
seasons INT)

TABLE Reviews
(Reviews_id INT,

tilde STRING,
review STRING,
parent_Show INT)

TABLE Episode
(Episode_id INT,

episode STRING)
....

(a) (b) (c)

Figure 4: Three storage mappings for shows

It is worthy of note that capturing document order adds over-
heads to the mapping process, both with respect to storage use and
query evaluation costs. Tatarinov et al [23] studied the performance
implications of several techniques to maintain order information.

Node Label Left-end point Right-end point
...

REVIEW 14 28
SUNTIMES 15 27
REVIEWER 16 19

”Roger Ebert” 17 18
RATING 20 23

”Two thumbs up!” 21 22
COMMENT 24 27

”This is a fun ...” 25 26
...

Figure 5: Interval-based Relational Schema Design

Automatic-generation versus Manual-specification. All map-
ping techniques proposed in the research literature provide an au-
tomated means to derive mappings. Commercial products [14, 18]
allow users to manually specify mappings between XML and rela-
tional schemata. Languages such as XSLT [25], XQuery [3], and
IBM’s DAD [14] can be used to define mappings that perform ar-
bitrary transformations over an XML document. Although these
approaches allow substantial flexibility in creating mappings, they
have drawbacks. Since there may be many different ways to map
a given document (or schema) into relations, in order to design a
goodmapping, a developer must have a good understanding of both
XML and relational technologies. Especially for large schemata,
it can be tedious to write these specifications, and more impor-
tantly, to verify whether they arecorrect(e.g.,whether all elements
are mapped). Also, since arbitrary transformations are allowed,
the actual shredding of the documents can be very expensive, both
in terms of processing and memory requirements; and specialized
query translation engines may be needed on a per-application basis.
Discussion. As discussed above, there are many different ways
of mapping XML documents into relational tables. Different ap-
proaches use different means to capture element identity, document

structure, and order. A flexible mapping middleware system, that
is able to represent all different mappings, must be able to support
multiple choices for these dimensions.

Another important requirement for a mapping system is the abil-
ity to support all mapping tasks,i.e.,schema design, shredding and
loading, and query translation. Most techniques proposed in the
literature focus on a specific task. In addition, proposed systems
often hard-code shredding and query translation for a specific map-
ping; making it hard not only to re-use them, but also to compare
different approaches for these tasks.

3. THE SYSTEM
A key component ofShreXis the annotation-based framework

to define mappings: a mapping is expressed by annotating an XML
schema. The various mapping dimensions were taken into account
in the design ofShreXannotations. As a result, different mapping
choices (i.e., different ways to capture structure and order) can be
easily combined to create new mapping strategies. The use of an-
notations also makes the system extensible, as new annotations can
be added to express new mapping choices; and portable, since the
mapping definition is independent from the underlying relational
database.

ShreXalso provides an API to access mapping information. This
API allows the design of generic functions for the mapping tasks,
i.e., functions that are not tied to the specifics of a particular map-
ping strategy.

In what follows, we describe the architecture ofShreXand ex-
plain how the mapping specification is used to validate mappings,
shred and load XML documents, and translate XML queries to SQL
(Section 3.1). We then describe how mappings are defined in Sec-
tion 3.2.

3.1 Architecture Overview
The architecture ofShreXis shown in Figure 6. Users can either

manually annotate an input schema, or use the interface provided
by the system. Theannotation processorparses an annotated XML
schema, checks the validity of the mapping and creates the corre-
sponding relational schema. In addition, the mapping information
is made persistent in themapping repository. Thedocument shred-

Relational

Database

Mapping

Repository

Mapping API

Validating Parser

And

Shredder

Annotation
Processor

Query

Translator

Annotated

XML Schema

XML

Document
XML answers

XML query

Tuples SQL

CREATE TABLE

statements

Tuples

Default Rules

Figure 6: ShreXArchitecture

der accepts as input a document, and uses the mapping API to ac-
cess the information in the mapping repository in order to generate
the tuples and load them into the relational database. The mapping
repository is also accessed by thequery translator, which generates
SQL queries from XML queries.
User Interface. ShreXprovides a graphical user interface that
helps users define and customize mappings. The interface dis-
plays the XML schema and corresponding relational tables, al-
lowing users to visually check the connections between the XML
elements and their relational counterparts, as well as interactively
modify the mapping specification.
Annotation Processor. This module is in charge of parsing an
annotated XML schema, checking the validity of a mapping, gen-
erating a mapping repository and producing theCREATE TABLE
statements necessary to construct the relational schema. In order
to check the validity of a mapping, the annotation processor val-
idates the input (annotated) schema against an XML schema for
annotations [1]. The current version of ShreX supports simple va-
lidity checks such as verifying whether annotations are attached to
the appropriate elements, and whether table and attribute names
are unique in the mapping definition. Additional checks are pos-
sible, for example, verifying whether a mapping islossless— i.e.,
whether the document can be reconstructed from the mapped ta-
bles.

Writing an annotation for every element and attribute definition
in an XML schema can be tedious, especially for large schemata.
Thus,ShreXprovides a set of default rules that is used tocomplete
mapping specifications. For example, single-occurrence elements
such as showTITLE are inlined by default. Users can define new
rules, and obviously, override existing default rules by adding a
specific annotation to the input XML schema.
Mapping Repository and API. The mapping information extracted
by the annotation processor is stored in a database — the mapping
repository. Making this information persistent avoids the need to
re-parse a mapping specification each time a document is loaded
into the target database or that a query needs to be translated into
SQL. ShreXprovides an API to the mapping repository that al-
lows access to information such as: how elements and attributes
are mapped

isTable(ElemName|AttName),

which mapping is used to capture document structure
getStructureScheme(),

and which tables are available in the relational schema:
getTableInfo(TableName).

Table 2 summarizes the functions provided by the API. This API
allows users to write mapping-independent code which works re-
gardless of the specific features of a particular mapping.
Document Shredder. The shredder is in charge of generating tu-
ples, field values and CLOBs from an input document. It piggy-
backs on a standard XML parser. While a document is parsed,
the shredder uses the mapping API in order to retrieve information
about how a particular element or attribute is mapped, and gener-
ates the appropriate tuples accordingly.

ShreXuses the SAX interface of Xerces [24], which is both ef-
ficient and scalable. In the current implementation, while the doc-
ument is parsed, the tuples are written to a file. After parsing is
finished, the output file is bulkloaded into the relational backend.
Even using this näıve implementation, the system is able to shred
and load a 1GB document into DB2 in less than 30 minutes. It is
worth pointing out that significantly smaller files cannot be loaded
using some commercial solutions [26]. Note that the shredded al-
lows users to set various parameters (e.g.,target database system,
login information, bulk loading option) either through the com-
mand line or through a configuration file.
Query Translator. In the current implementation, the query trans-
lator (to SQL) supports a subset of XPath that includes child and
descendant axes and position-based predicates. Similar to the doc-
ument shredder, the query translator does not hard-code mapping
choices, instead it uses the information provided by the mapping
API to dynamically decide how to perform the translation.
Database API.ShreXmappings specifications are portable and in-
dependent from any particular database backend. However, lower-
level functions must deal with the peculiarities of different database
systems. For example, different databases provide different bulk-
loading options and commands, andShreX must be able to in-
voke these commands. We have designed a generic yet simple
database JAVA programming interface which allows users to hook
an RDBMS toShreXby implementing the functions in the inter-
face. Plug-ins for DB2, Oracle and MySQL are available in the
current release ofShreX.

API Function Input Output Semantics
structMap KFO, Interval, Dewey returns which structure mapping is used.
isTable attribute or element

name
true, false determines whether the input has been mapped

to a table.
isField attribute or element

name
true, false determines whether the input has been mapped

to a field.
isEdge element name true, false determines whether the input has been mapped

using edge-mapping.
getTableName attribute or element

name
string returns the name of the table used to map in-

put.
getFieldName attribute or element

name
string returns the name of the field used to map input.

getTableInfo table name table description returns the table description in the relational
schema.

getFieldInfo field name field description returns the field description in the relational
schema.

Table 2: Main API Functions

3.2 Mapping Definition
Mappings are expressed by annotating an input XML schema.

Annotations define how a given XML fragment should be mapped
into the relational model. Annotations are expressed using attributes
from a namespace calledshrex, and can be associated to attributes,
elements and groups. The annotation attributes supported byShreX
are shown in Table 3. Figure 7 illustrates the use of some of the
annotations (shown in boldface). The use of a specific namespace
for annotations helps separate the validation of an input document
against its XML schema from the validation of the mapping speci-
fication.
Mapping identity, structure and order. An important aspect of
a mapping is how it captures element identity, document struc-
ture and order. InShreX, the choice of structure mapping can be
specified through thestructureschemeattribute (see Table 3). For
example, in Figure 7, the structure scheme selected for the docu-
ment is Dewey (see annotation in the root element). Other sup-
ported schemes include: key-foreign-key for parent-child relation-
ships and ordinal for siblings (“KFO”) [4]; and interval encod-
ing [8]. The ability to define multiple document structure schemes
is a feature that is unique toShreX.

<element name="SHOW"
shrex :structurescheme="Dewey" />

<sequence>
<element name="TITLE" type="string"

shrex :outline="true"
shrex :tablename="Showtitle" />

<element name="YEAR" type="integer"
shrex :outline="false"
shrex :columnname="Showyear"
shrex :sqltype="NUMBER(4)" />

<element name="REVIEW" type="ANYTYPE"
minOccurs="0" maxOccurs="unbounded"
shrex :edgemapping="true" />

<element name="AKA" type="string"
minOccurs="0" maxOccurs="unbounded"/>

<sequence>
</element>

Figure 7: Annotated movie schema

Outline, tablename, columnname, sqltype.Annotations are used
to specify how individual elements and attributes in a document are
represented in the relational schema. Figure 8 shows the relational
configuration for the annotated schema of Figure 7. The annotation
outline=“true” in the elementTITLE indicates that it should be
mapped to a separate table; and the annotationtablenamespecifies
that this table should be namedShowtitle. The elementYEAR, on

the other hand, has itsoutline attribute set to false, consequently it
is inlined in the table corresponding to its parent element,SHOW.
The annotationssqltype and columnname in the YEARelement
specify that it should be mapped to a column namedShowyearand
SQL typeNUMBER(4). Although not illustrated in the example,
an element can also be mapped into a CLOB, using the annotation
maptoclob.

TABLE SHOW(ID VARCHAR(128),
Showyear NUMBER(4))

TABLE Showtitle(ID VARCHAR(128),
ParentID VARCHAR(128), TITLE VARCHAR(512))

TABLE REVIEW(ParentID VARCHAR(128),
source VARCHAR(128),
ordinal VARCHAR(128),
attrname VARCHAR(128),
flag VARCHAR(128),
value VARCHAR(128))

TABLE AKA(ID VARCHAR(128),
ParentID VARCHAR(128), AKA VARCHAR(512))

Figure 8: Relational configuration for movie schema

Mapping schemaless documents.The use of annotated schemata
in ShreXdoes not preclude the system from expressing generic
(schemaless) mappings. For example, in Figure 7, the annota-
tion edgemapping=“true” in the elementREVIEW indicates that
REVIEWand its descendants are mapped using Edge mapping [13],
i.e., a single table to store all theREVIEWelements and contents.
This functionality is specially useful to map elements whose struc-
tures are not known in advance, such as elements of typeANYTYPE.

Annotations naturally allow the definition of mappings that com-
bine different mapping strategies. Note that, in this example, part
of the document is mapped using a generic mapping – Edge, and
part is mapped using a schema-aware strategy.
Transformation-based mappings.Additional mapping strategies
are supported by combining annotations with the schema transfor-
mations proposed in [4]. For example, if repetition split is applied
to AKA in the original schema,i.e., AKA* → AKA?, AKA*, the first
occurrence ofAKAcould be inlined in the tableSHOW:

TABLE SHOW(ID VARCHAR(128),
Showyear NUMBER(4),
AKA VARCHAR(512))

Annotation attributes Target Value Action
outline attribute or element true, false If value is true, a relational table is created

for the attribute or element. Otherwise, the at-
tribute or element is mapped to one or multiple
columns in its containing table (i.e., inlined).

tablename attribute, element or
group

string The string is used as the table name.

columnname attribute or element
of simple type

string The string is used as the column name.

sqltype attribute or element
of simple type

string The string overrides the SQL type of a column.

structurescheme root element KFO, Interval, Dewey Specifies structure mapping.
edgemapping element true, false If value is true, the element and its descendants

are shredded according to Edge mapping [13].
maptoclob attribute or element true, false If value is true, the element or attribute is

mapped to a CLOB column.

Table 3: Annotation Attributes. Each row in the table contains an annotation attribute, its target (i.e.,element, attribute, and group
to which it applies), its possible values and effect.

Union distribution [4] is an example of another mapping choice
that can be expressed by a combining schema transformation and
ShreXannotations. Recall that in the IMDB schema of Figure 1,
a SHOWmay be either a movie or TV show. By creating two new
groups, one for movies and one for TV shows, and indicating that
each group should correspond to a table, we can generate the con-
figuration shown in Figure 4(c).
Mapping Expressiveness.In what follows, we show a few exam-
ples to illustrate how our mapping definition framework expresses
existing schema-based mapping techniques. In particular, we de-
scribe how the strategies proposed in [22] can be expressed us-
ing ShreXannotations. The sample schema describes information
aboutMovie andTV elements, where both have aTITLE element.

<element name="Movie">
<sequence>

<element name="TITLE" type="string"
shrex :tablename="MovieTitle" />

<sequence>
</element>
<element name="TV">

<sequence>
<element name="TITLE" type="string"

shrex :tablename="TVTitle" />
<sequence>

</element>

Figure 9: Schema Annotations equivalent to Basic Inlining

Thebasic inliningtechnique creates a relation for every element
in the input schema. Figure 9 illustrates the annotations (shown
in boldface) which correspond to basic inlining. The annotation
tablename=“MovieTitle” in the elementTITLE insideMovie in-
dicates it should be mapped to a separate table with nameMovi-
eTitle. Similarly, The annotationtablename=“TVTitle” in the el-
ementTITLE inside TV indicates that a tableTVTitle should be
generated for it. As a result, a table is created for each element
defined in the XML schema:

TABLE Movie(ID VARCHAR(128))
TABLE MovieTitle (ID VARCHAR(128),

ParentID VARCHAR(128), TITLE VARCHAR(512))
TABLE TV(ID VARCHAR(128))
TABLE TVTitle (ID VARCHAR(128),

ParentID VARCHAR(128), TITLE VARCHAR(512))

The shared inliningtechnique identifies the elements that have
multiple parents, such as theTITLE element, and uses a single table

to store the different instances of this element. Figure 10 illustrates
the annotations which generates a shared-inlining relational config-
uration. The annotations in bothTITLE elements set the table name
to Title , implying that they will be mapped to the same table. The
resulting relational configuration is as follows:

TABLE Movie(ID VARCHAR(128))
TABLE TV(ID VARCHAR(128))
TABLE Title (ID VARCHAR(128),

MovieID VARCHAR(128), TVID VARCHAR(128),
TITLE VARCHAR(512))

<element name="Movie">
<sequence>

<element name="TITLE" type="string"
shrex :tablename="Title" />

<sequence>
</element>
<element name="TV">

<sequence>
<element name="TITLE" type="string"

shrex :tablename="Title" />
<sequence>

</element>

Figure 10: Schema Annotations equivalent to Shared Inlining

Thehybrid inlining technique further inlines theTITLE element
and reduces the generated relational tables to two. Hybrid inlining
corresponds to the default mapping rules used inShreX, hence no
annotation is needed – the input schema, as is, produces the follow-
ing relational configuration:

TABLE Movie(ID VARCHAR(128), TITLE VARCHAR(512))
TABLE TV(ID VARCHAR(128), TITLE VARCHAR(512))

4. DISCUSSION
To the best of our knowledge,ShreXis the first comprehensive

system for managing (i.e., shredding, loading and querying) XML
documents in relational databases.ShreXhas several novel fea-
tures including the ability to define mixed-mapping strategies and
to specify a document structure scheme. The implementation of
ShreXis modular and easily accommodates changes and extensions
to the system. For instance, if a new mapping technique is devel-
oped and users want to incorporate it intoShreX, it suffices to add
a few annotation attributes and extend the annotation processor to
handle the new attributes.

ShreXmakes it simple to study and compare the performance
of multiple query translation techniques using different mapping
strategies. By making the source code available, we hopeShreX
will serve as a platform to develop and evaluate new mapping strate-
gies, query translation and optimization algorithms.

Our preliminary experiments show that, for shredding and load-
ing XML documents,ShreXis highly scalable — it is able to shred
very large documents, and reasonably efficient (even with the cur-
rent näıve implementation). As future work, we intend to do a de-
tailed performance analysis for query translation.

A problem that is orthogonal to designing mapping strategies is
the translation of constraints in the document schema to the cor-
responding relational schema. For instance, the propagation of
keys [7] and functional dependencies [5] have been studied. Be-
sides capturing the semantics of the original document schema,
these techniques have been shown to improve the mappings by,e.g.,
reducing the storage of redundant information [5]. Constraints are
also important when updates are allowed over the mapped relations.
Barbosa et al [2] defined sufficient conditions for guaranteeing that
mappings preserve enough information so that the mapped docu-
ment remains valid in the presence of updates. We plan to provide
a constraint translation module and support for updates in a future
release ofShreX.
Acknowledgments. The National Science Foundation partially
supports Juliana Freire under grant EIA-0323604.

5. REFERENCES
[1] S. Amer-Yahia, F. Du, and J. Freire. A generic and flexible

framework for mapping XML documents into relations.
Technical report, OGI/OHSU, 2004.

[2] D. Barbosa, J. Freire, and A. Mendelzon. Information
preservation in XML-to-relational mappings. InProceedings
of the International XML Database Symposium (XSym),
pages 66–81, 2004.

[3] S. Boag, D. Chamberlin, M. Fernández, D. Florescu,
J. Robie, and J. Siḿeon. XQuery 1.0: An XML query
language. W3C Working Draft, July 2004.

[4] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML
schema to relations: A cost-based approach to XML storage.
In Proceedings of the International Conference on Data
Engineering (ICDE), pages 64–75, 2002.

[5] Y. Chen, S. Davidson, C. Hara, and Y. Zheng. RRXS:
Redundancy reducing XML storage in relations. In
Proceedings of the International Conference on Very Large
Data Bases (VLDB), 2003.

[6] Y. Chen, S. B. Davidson, and Y. Zheng. Constraints
preserving schema mapping from XML to relations. In
Proceedings of the Workshop on Web and Databases
(WebDB), pages 7–12, 2002.

[7] S. Davidson, W. Fan, C. Hara, and J. Qin. Propagating XML
constraints to relations. InProceedings of the International
Conference on Data Engineering (ICDE), 2003.

[8] D. DeHaan, D. Toman, M. P. Consens, and M. T. Ozsu. A
comprehensive XQuery to SQL translation using dynamic
interval coding. InProceedings of the ACM SIGMOD
International Conference on Management of Data, 2003.

[9] A. Deutsch, M. Fernandez, and D. Suciu. Storing
semi-structured data with STORED. InProceedings of the
ACM SIGMOD International Conference on Management of
Data, pages 431–442, 1999.

[10] Introduction to the Dewey decimal classification. online
computer library center.

http://www.oclc.org/dewey/about/about the ddc.htm.
[11] F. Du, S. Amer-Yahia, and J. Freire. ShreX: Managing XML

documents in relational databases. InProceedings of the
International Conference on Very Large Data Bases (VLDB),
2004.

[12] D. Florescu and D. Kossman. Storing and querying XML
data using an RDMBS.IEEE Data Engineering Bulletin,
22(3):27–34, 1999.

[13] D. Florescu and D. Kossmann. A performance evaluation of
alternative mapping schemes for storing XML in a relational
database. Technical Report 3680, INRIA, 1999.

[14] IBM DB2 XML Extender.http://www4.ibm.com/software/
data/db2/extenders/xmlext.html.

[15] M. Klettke and H. Meyer. XML and object-relational
database systems - enhancing structural mappings based on
statistics. InProceedings of the Workshop on Web and
Databases (WebDB), pages 63–68, 2000.

[16] R. Krishnamurthy, R. Kaushik, and J. F. Naughton.
XML-SQL query translation literature: The state of the art
and open problems. InProceedings of the International XML
Database Symposium (XSym), 2003.

[17] D. Lee and W. W. Chu. Constraints-preserving
transformation from XML document type definition to
relational schema. InInternational Conference on
Conceptual Modeling (ER), 2000.

[18] Microsoft support for XML.
http://msdn.microsoft.com/ sqlxml.

[19] M. Ramanath, J. Freire, J. Haritsa, and P. Roy. Searching for
efficient XML-to-relational mappings. InProceedings of the
International XML Database Symposium (XSym), 2003.

[20] K. Runapongsa and J. M. Patel. Storing and querying XML
data in object-relational DBMSs. InProceedings of the
International Conference on Extending Database Technology
(EDBT), 2002.

[21] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas.
Efficient relational storage and retrieval of XML documents.
In Proceedings of the Workshop on Web and Databases
(WebDB), pages 47–52, 2000.

[22] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, and J. Naughton. Relational databases for
querying XML documents: Limitations and opportunities. In
Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 302–314, 1999.

[23] I. Tatarinov, S. Viglas, K. Beyer, J. S. m, E. Shekita, and
C. Zhang. Storing and querying ordered XML using a
relational database system. InProceedings of the ACM
SIGMOD International Conference on Management of Data,
pages 204–215, 2002.

[24] Xerces Java parser 1.4.3.http://xml.apache.org/xerces-j.
[25] XSL transformations (XSLT). http://www.w3.org/TR/xslt.
[26] B. B. Yao, M. T.Özsu, and N. Khandelwal. XBench

benchmark and performance testing of XML DBMSs. In
Proceedings of the International Conference on Data
Engineering (ICDE), pages 621–632, 2004.

[27] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura.
XRel: a path-based approach to storage and retrieval of XML
documents using relational databases. InACM Transactions
on Internet Technology, pages 110–141, 2001.

