
A Generic and Flexible Framework for Mapping XML
Documents into Relations

Sihem Amer-Yahia
AT&T Labs – Research

sihem@research.att.com

Fang Du
OGI/OHSU

fangdu@cse.ogi.edu

Juliana Freire
OGI/OHSU

juliana@cse.ogi.edu

ABSTRACT
As Web applications manipulate an increasing volume of XML
data, there is a growing need for reliable systems to store and pro-
vide efficient access to these data. The use of relational database
systems for this purpose has attracted considerable interest with a
view to leveraging their powerful and reliable data management
services.

Due to the mismatch between the XML and the relational models
and the many different ways to map a given XML document into
relations, it is hard to tune a relational engine and ensure that XML
queries will be evaluated efficiently. Several approaches have been
proposed to address this problem. In fact, major database vendors
provide several means for database developers to describe how to
map XML documents into relational tables. However, the available
solutions are proprietary, and tied to a particular database backend.
In addition, they are either limited with respect to expressivity and
the kinds of mappings they can represent, or they are too complex
to use.

In this paper, we propose an XML-to-relational mapping frame-
work (and system) that is portable, expressive, and easy to use. We
describe a mapping scheme wherein mappings are defined through
annotations in an XML Schema and thus, not tied to any particular
database engine. The various mapping dimensions were taken into
account in the design of the annotations, making the framework
flexible; capable of expressing a wide range of existing mappings
strategies; and easily extensible to incorporate new mapping strate-
gies. In effect, together with the schema information, the map-
ping provides a formal specification of the mapping. We show how
this specification can be leveraged in two important tasks: in map-
ping analysis to ensure both correctness and that desirable prop-
erties hold for a given mapping; and in data shredding and query
translation.

1. INTRODUCTION
XML is becoming the predominant data format in a variety of

application domains (e.g.,supply-chain, scientific data processing,
telecommunication infrastructure). Many such applications pro-
duce and consume large volumes of XML data and thus require
efficient and reliable storage systems.

The use of relational database systems for this purpose has at-
tracted considerable interest both by the research community and
the database vendors. By relying on relational engines, XML devel-
opers can benefit from a complete set of data management services
(including concurrency control, crash recovery, and scalability) and
from the highly optimized relational query processors. However, as

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, NY USA.
ACM xxx.xxx.

the example below illustrates, storing and querying XML data in an
RDBMS is an involved task.

<element name="IMDB" type=’’imdb’’>
<element name="SHOW">

<sequence>
<element name="TITLE" type="string"/>
<element name="YEAR" type="integer"/>
<element name="AKA" type="string"

minOccurs="1" maxOccurs="10"/>
<element name="REVIEW" type="ANYTYPE"

minOccurs="0" maxOccurs="unbounded"/>
<choice>

<sequence>
<element name="BOXOFFICE" type="integer"/>
<element name="VIDEOSALES" type="integer"/>

</sequence>
<sequence>

<element name="SEASONS" type="integer"/>
<element name="EPISODE" type="ANYTYPE"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>

</choice>
</sequence>

</element>
</element>

Figure 1: Excerpt of IMDB schema

Example 1.1 (Mapping show data). Consider the follow-
ing scenario. FakeFilm.com plans to deploy a new Web site that
publishes information about movies and TV shows. Since they use
a relational database, they need to map the existing show data that
is available in XML from the Internet Movie Database (IMDB) into
their database. An excerpt of the IMDB schema and a sample doc-
ument are shown in Figures 1 and 2, respectively. The document
illustrates the variability that the show schema allows. A show may
contain zero or more reviews, 1 to 10 alternative titles (i.e., AKA),
and either information about movies or TV shows.

In order to store a movie document, first, amapping must be
constructedthat indicates how the elements should be stored in the
relational database. Because of the variability in the data allowed
by the schema, many different mappings and corresponding rela-
tional configurations can be derived to store documents conformant
with the IMDB schema. Figure 3 illustrates some of the alterna-
tives. Configuration (a) results from inlining as many elements as
possible in the same table, roughly corresponding to the strategies
presented in [16]. Configuration (b) is obtained from configuration
(a) by partitioning theReviews table into two tables: one that con-
tains New York Times reviews, and another for reviews from other
sources. Finally, configuration (c) is obtained from configuration
(a) by splitting theShow table into Movie shows and TV shows.

Once a particular mapping is selected, theXML data must be
loadedinto the relational system,i.e.,documents must be shredded

<IMDB>
<SHOW>

<TITLE>Fugitive, The</TITLE>
<YEAR>1993</YEAR>
<AKA>Auf der Flucht</AKA>
<AKA>Fuggitivo, Il</AKA>
<REVIEW>

<SUNTIMES>
<REVIEWER>Roger Ebert</REVIEWER>
<RATING>Two thumbs up!</RATING>
<COMMENT>

This is a fun action movie,
Harrison Ford at his best. </COMMENT>

</SUNTIMES>
</REVIEW>
<REVIEW>

<NYT>
The standard Hollywood summer
movie strikes back. </NYT>

</REVIEW>
<BOX_OFFICE>183,752,965</BOX_OFFICE>
<VIDEO_SALES>72,450,220</VIDEO_SALES>

</SHOW>

<SHOW>
<TITLE>X Files, The</TITLE>
<YEAR>1994</YEAR>
<AKA>Akte X - Die unheimlichen

Fälle des FBI</AKA>
<AKA>Aux frontieres du Reel</AKA>
<SEASONS> 10 </SEASONS>
<EPISODE>

<NAME>Ghost in the Machine</NAME>
<GUEST_DIRECTOR> Jerrold Freedman </GUEST_DIRECTOR>

</EPISODE>
<EPISODE>

<NAME>Fallen Angel</NAME>
<GUEST_DIRECTOR> Larry Shaw </GUEST_DIRECTOr>

</EPISODE>
</SHOW>
....

</IMDB>

Figure 2: Sample IMDB document

into tuples and loaded into the relational tables. Finally, at run-
time,XML queries must be translatedinto equivalent SQL queries
over the mapped data.

As Example 1.1 illustrates, the storage problem has many dimen-
sions, including: mapping strategies; mapping definition language;
data shredding; and query translation. Several mapping strategies
e.g.,[3, 5, 9, 16, 17, 15]) and query translation algorithms (see [11]
for a survey) have been proposed in the literature. Commercial
RDBMSs provide different mapping mechanisms which can be au-
tomatic, using a pre-defined (and fixed) strategy, or manual, where
the user must manually define the mapping using a proprietary lan-
guage provided by the database vendor.

None of these solutions, however, addresses all the storage prob-
lems in a single framework. For example, work on mapping strate-
gies often have little or no details about query translation [11].
Commercial RDBMS provide no query translation,i.e.,the mapped
XML data must be queried through SQL, which requires users to
have knowledge of the mapping details; and some useful mappings
cannot be expressed using their proprietary languages.

In this paper, we proposeMDF, a mapping definition framework
that provides the first comprehensive solution to the relational stor-
age of XML data. Key to the framework is a formal specifica-
tion of a mapping which provides a simple, yet powerful, mapping
scheme. The mapping scheme is flexible and is able to express
a wide range of mapping strategies. Information in the mapping
specification also allows the implementation of generic loaders and
query translators, which are independent from the mapping strat-
egy. In addition, it allows automated analysis of mappings,e.g.,to
determine whether a mapping iscorrectandlossless.

Contributions. In sum, our main contributions are:

• We propose a novel scheme for defining XML-to-relational
mappings;

• We describe the implementation of a system, based on this
scheme, which provides the first comprehensive solution to
the relational storage of XML data.

Outline. The rest of the paper is organized as follows. Section 2
gives an overview of our approach. We survey some of the tech-
niques used to capture identity, structure and order of XML doc-
uments in Section 3. In Section 4, we discuss the different di-
mensions of a mapping and we introduce our generic mapping
scheme. The architecture and implementation of the system, in-
cluding the mapping interface, the loader and the query translator,
are described in Section 5. Related work is reviewed in Section 6.
We conclude in Section 7 with directions for future work.

2. OVERVIEW
There are many different ways to express XML-to-relational map-

pings. Languages such as XSLT [22] or IBM’s DAD [10] can be
used to define mappings that perform arbitrary transformations over
an XML document. However, there are drawbacks in using such
complex languages for mapping. First and foremost, users must
learn these languages, which may require a steep learning curve. In
addition, since they allow virtually any mapping, it is hard to rea-
son about the constructed mappings. For example, it can be very
hard to look at an XSLT program and determine whether the map-
ping it represents preserves all the information in the original docu-
ment. Lastly, since complex transformations are allowed, the actual
shredding of the documents can be very expensive, both in terms of
processing and memory requirements; and specialized query trans-
lation engines may need to be designed on a per-application basis.

Thus, instead of using a language that allows arbitrary transfor-
mations, we use a more restrictive (and declarative) approach. Our
mapping definition framework (MDF) relies onannotating an in-
put XML Schema with a limited number of pre-defined annotations,
thereby controlling the mappings that users can define. It is worthy
of note that although less expressive than XSLT, a wide variety of
mapping strategies can be expressed by combining these annota-
tions, including strategies defined in the literature (e.g.,[3, 5, 9, 16,
17, 15]).

The ability to specify mappings using annotations has many ben-
efits: it provides great flexibility in the choices of how to map ele-
ments, attributes and document structure; it is extensible – by defin-
ing new annotations new mapping choices can be made available
(e.g.,support for different data models); it is portable – mapping
specifications are independent from the target relational database.

Another advantage of the schema-annotation-based approach is
the ability to analyze the specification. Different kinds of analyses
are possible, including consistency and different notions ofcorrect-
ness. Understanding the properties of mappings is especially useful
in a practical tool, to guide users in specifying their mappings and
to ensure that the requirements of the applications are met by the
mapping.

An important characteristic of a mapping islosslessness, i.e.,all
the information in the source data is preserved in the target data. We
develop a method to guide users in specifying lossless mappings by
identifying which portions of a user-defined mapping might cause
loss of information and enforcing a mapping for those portions.

Once a mapping is defined, applications that use the mapped data
may need access to the details of the mapping. For example, an ap-
plication that translates XQuery queries into SQL needs detailed

TABLE Show
(Show_id INT,

title STRING,
year INT,
box_office INT,
video_sales INT,
seasons INT)

TABLE Review
(Reviews_id INT,

tilde STRING,
reviews STRING,
parent_Show INT)

TABLE Episode
(Episode_id INT,

episode STRING)

....

TABLE Show
(Show_id INT,

title STRING,
year INT,
box_office INT,
video_sales INT,
seasons INT)

TABLE NYT_Reviews
(Reviews_id INT,

review STRING,
parent_Show INT)

TABLE Reviews
(Reviews_id INT,

tilde STRING,
review STRING,
parent_Show INT)

TABLE Episode
(Episode_id INT,

episode STRING)
....

TABLE Movie_Show
(Movie_Show_id INT,

title STRING,
year INT,
box_office INT,
video_sales INT)

TABLE TV_Show
(TV_Show_id INT,

type STRING,
title STRING,
year INT,
seasons INT)

TABLE Reviews
(Reviews_id INT,

tilde STRING,
review STRING,
parent_Show INT)

TABLE Episode
(Episode_id INT,

episode STRING)
....

(a) (b) (c)

Figure 3: Three storage mappings for shows

knowledge of the document structure and data types. Our frame-
work provides an API to mapping information. The use of this API
is illustrated in Section 5.

3. IDENTITY, STRUCTURE AND ORDER
XML-to-relational mappings define how the structure, element

identity and order in XML documents are represented in a rela-
tional database. Existing mapping techniques generate a unique
identifier for each node in the XML document tree which are used
capture document structure. In what follows, we give a brief overview
of some of the techniques proposed in the literature. Readers are
referred to [18] for more details.
Key, Foreign Key and Ordinal. A simple way to capture par-

ent/child relationships in an XML document is to assign a unique
identifier to each element, and have a foreign key in the child record
that points to the identifier of its parent. For example, in Fig-
ure 3(a), a foreign keyparent Show is created inTABLE Review
which refers to a record inTABLE Show. Sibling order can be cap-
ture using an ordinal value (that can be the key of the element
itself). We refer to this technique as KFO for Key, Foreign key
and Ordinal. KFO is used in a number of mapping strategies (see
e.g., [9, 3]). As an example, theEdge table defined in [9] uses
KFO.
Interval Encoding. In interval encoding, a unique{start, end}
interval identifies each node in the document tree. This interval can
be generated in multiple ways. The most common method is to cre-
ate a unique identifier,start, for each node in a preorder traversal
of the document tree, and a unique identifier,end, in a postorder
traversal. A nice property of this encoding is that the interval of a
node is included in the interval of its parent node. In order to distin-
guish children from descendants, a level number is recorded with
each node. This technique is used in the TIMBER [14] system.
Dewey The Dewey Decimal Classification was originally devel-
oped for general knowledge classification [6]. This encoding records,
at each node, the path from the node to the document root by con-
catenating the identifiers of the nodes along that path. Thus, the
property of Dewey is that the identifier of a node contains its parent
node identifier and the level at which the node is in the document
tree. For example, if the identifier at a node is1.2.24.65 , then
we know that the node is at the fourth level in the tree and that the
identifier of its parent node is1.2.24 . This encoding is used in

LDAP directories and has been applied to XML storage in [12].

4. DEFINING MAPPINGS
Our goal in designingMDF was to create a declarative specifi-

cation for mappings that allows users to express as well as combine
multiple storage techniques (i.e.,different ways to capture structure
and order). In order to achieve this goal, we identified orthogonal
dimensions of a mapping.

Definition 4.1 (Element Mapping). An element mapping,EM,
is a function that maps an element into a table, column or CLOB in
the relational schema.

Definition 4.2 (Attribute Mapping). An attribute mapping,AM ,
is a function that maps an attribute into a table, column or CLOB
in the relational schema.

Definition 4.3 (Structure Mapping). A structure mappingSM
defines an identity, structure and order mapping as described in
Section 3.

Definition 4.4 (Mapping). A mapping is defined by a quadru-
ple (XS, EM, AM, SM) whereXS is an input XML Schema,EM is
a set of element mappings,AM is a set of attribute mappings and,
SM is a structure mapping.

We refer toEM, AM andSMas the dimensions of a mapping. A
declarative mapping specification should permit each mapping di-
mension to be defined independently, thus allowing different choices
for the mapping dimensions to be combined, and enabling flexible
and expressive mappings.

In MDF, a mapping is expressed by annotating an input XML
Schema with element, attribute and structure mappings. Thus, we
define appropriate annotations that capture each of these mapping
dimensions.

4.1 Schema Annotations
Annotations can be associated to attributes, elements and groups

in the input XML Schema. The annotation syntax corresponds to
adding attributes from a namespace calledmdf to a given input
XML Schema. By using a different namespace, documents con-
forming to the initial schema still conform to the annotated schema,

Annotation attributes Target Value Action
outline attribute or element true, false If value is true, a relational table is created

for the attribute or element. Otherwise, the at-
tribute or element is mapped to one or multiple
columns in its containing table (i.e., inlined).

tablename attribute, element or
group

string The string is used as the table name.

columnname attribute or element
of simple type

string The string is used as the column name.

sqltype attribute or element
of simple type

string The string overrides the SQL type of a column.

structurescheme root element KFO, Interval, Dewey Specifies structure mapping.
edgemapping element true, false If value is true, the element and its descendants

are shredded according to Edge mapping [9].
maptoclob attribute or element true, false If value is true, the element or attribute is

mapped to a CLOB column.

Table 1: Annotation Attributes

which can be used to validate them. The annotation attributes are
summarized in Table 1. Each row in the table contains an annota-
tion attribute, its target (i.e., element, attribute, group and simple
type), its possible values and its action, depending on its target and
value. Below, we use examples to illustrate the flexibility of the
annotations supported inMDF.

4.1.1 Outline, tablename, columnname, sqltype.
In Figure 2(a), the elementTITLE is a simple type under the

complex typeSHOW. In order to outlineTITLE , we set its attribute
outline from namespacemdf to true. As illustrated in Figure 4, the
elementTITLE is mapped to a new tableShowtitle as specified by
the annotation attributetablename. However, the attributeoutline
in elementYEARis set of false which causes to inline this element
in the table corresponding toSHOW. Note also in this figure the use
of the annotationssqltype andcolumnname– these attributes are
added to theYEARelement to specify that it should be mapped to
a column with nameShowyearand SQL typeNUMBER(4) in the
table corresponding toSHOW.

4.1.2 Structurescheme, edgemapping
The attributestrutureschemecan be specified at the root ele-

ment to define which structure mapping is used to capture element
identity, document structure and order. By using the annotation:

<element name="IMDB" type="imdb"
mdf :structurescheme="Dewey" />

we specify that “Dewey” will be the structure mapping used through-
out the XML document. If the annotation attributeedgemapping
is used in theREVIEW as follows:

<element name="REVIEW" type="ANYTYPE"
minOccurs="0" maxOccurs="unbounded"
mdf :edgemapping="true" />

theREVIEWelement and its descendants are mapped using Edge [9],
i.e., a single table to store all the elements of the document. The
following table1 is created:

TABLE Review(ParentID VARCHAR(128),
source VARCHAR(128),
ordinal VARCHAR(128),
attrname VARCHAR(128),
flag VARCHAR(128),
value VARCHAR(128))

1For a detailed explanation about the columns in theReviewtable,
we refer readers to [9].

<element name="SHOW">
<sequence>

<element name="TITLE" type="string"
mdf :outline="true"
mdf :tablename="Showtitle" />

<element name="YEAR" type="integer"
mdf :outline="false"
mdf :columnname="Showyear"
mdf :sqltype="NUMBER(4)" />

</sequence>
</element> −−−−−−→

map into

TABLE SHOW(ID VARCHAR(128),
Showyear NUMBER(4) ,
BOXOFFICES NUMBER(10),
SEASONS VARCHAR(128))

TABLE Review(ID VARCHAR(128),
ParentID VARCHAR(128),
REVIEW VARCHAR(128))

TABLE Showtitle(ID, VARCHAR(128),
ParentID VARCHAR(128),
TITLE NUMBER(10))

Figure 4: Outlining simple types

Note that since Edge does not require an input schema, it is par-
ticularly useful for mapping unconstrained elements,i.e.,elements
of ANYTYPE. The use of Edge is also beneficial for parts of the
schema that are expected to be updated often.

4.1.3 Union Distribution
Union distribution is an example of a complex mapping that can

be expressed by our schema annotation scheme. In the sample
IMDB Schema of Figure 1, aSHOWmay be either a movie or TV
show. We can use our annotations to derive a schema that stores
shows in two tables – one for movies and one for TV shows. This
is similar to the union distribution rule defined in [3]. The annotated
schema and derived relational configuration are shown in Figure 5.

Our annotations do not depend on a particular target relational
schema which makes them portable on any relational system.

4.2 Mapping Properties
Mappings can be quite complex. Since many different choices

are available for each mapping dimension, and especially for large
schemata, it is easy to make mistakes while defining a mapping.
It is thus important to be able toautomatically checkwhether a
mapping iscorrect and lossless. For example, whether it gener-
ates multiple tables with the same name in the relational schema or
whether all elements in the document have been mapped. Below,

<element name="SHOW">
<choice>

<group ref="imdb:Movie"
mdf :tablename="Movie" />

<group ref="imdb:TV"
mdf :tablename="TV" />

</choice>
</element>
<group name="MOVIE" >

<sequence>
<element name="TITLE" type="string"/>
<element name="YEAR" type="integer"/>
<element name="BOXOFFICE" type="integer"/>
<element name="REVIEW" type="string"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>

</group>
<group name="TV" >

<sequence>
<element name="TITLE" type="string"/>
<element name="YEAR" type="integer"/>
<element name="SEASONS" type="string"/>

</sequence>
</group> −−−−−−→

map into

TABLE SHOW(ID VARCHAR(128))
TABLE MOVIE(ID VARCHAR(128),

ParentID VARCHAR(128),
TITLE NUMBER(10),
YEAR NUMBER(10),
BOXOFFICES NUMBER(10))

TABLE TV (ID VARCHAR(128),
ParentID VARCHAR(128),
TITLE NUMBER(10),
YEAR NUMBER(10),
SEASONS VARCHAR(128))

TABLE REVIEW(ID VARCHAR(128),
ParentID VARCHAR(128),
REVIEW VARCHAR(128))

Figure 5: Applying union distribution

we define the notions of mapping correctness and losslessness.

Definition 4.5 (Valid Relational Schema). A valid schema is a
schema where (i) table names are distinct, (ii) CLOB names are
distinct, (iii) each table has at least one field which is its key defined
by one of the structure mapping methods given in Section 3 and, (iv)
field names within the same table are distinct.

Definition 4.6 (Correct Mapping). A correct mapping is a map-
ping that generates a valid relational schema.

Definition 4.7 (Lossless Mapping). A mapping (XS, EM, AM,
SM), is lossless if: (0) it is correct and, (1) EM defines an element
mapping for each element in XS, (2) AM defines an attribute map-
ping for each attribute in XS and, (3) SM defines an order mapping.

Whereas a lossless mapping is always correct, a correct map-
ping may be lossy,e.g.,some elements may not be mapped into the
relational configuration. It is worthy of note that some order map-
pings may not preserve all the order information in the document,
e.g., a KFO identity scheme may not preserve order among sib-
lings. Since different applications have different requirements for
mapping properties, it is useful to define different notions of loss-
lessness. For example, for an application that does not require the
order among sibling nodes to be preserved, selecting KFO will lead
to acorrectmapping for that particular application. In Section 5,
we describe how mapping properties are enforced.

!!!!!!!!"#$

%"&'$"('#)!*"+,-+

./0!(1!+-&"('1#, Tuples

23-+4!5+"#,&"(1+

Query Answers

Mapping API

CREATE TABLE

!!!!!!67+-$$-+

configuration file

default rules

XML Document

Repository

8##1("('1#!

*+19-,,1+

Mapping

Annotated

XML Schema

Figure 6: Architecture

5. IMPLEMENTATION
In this section, we describe the general architecture ofMDF 2

and explain how we make use of the mapping specification to per-
form analyses, data shredding and query translation.

5.1 Architecture
The architecture ofMDF is shown in Figure 6. Users can ei-

ther manually annotate an input schema, or use the user interface
provided by the system. Theannotation processorparses an anno-
tated XML Schema and creates a relational schema and amapping
repositoryto store all mapping information. Themapping analyzer
can be used to verify mapping correctness and losslessness through
a series of checks in order to indicate to the user which portions
of his mapping are lossless. Thedocument shredderaccepts an
input document and uses mapping information stored in the map-
ping repository to generate tuples in the corresponding tables. The
mapping repository is also accessed by thequery translatorto gen-
erate SQL queries from XPath queries. Both modules access the
mapping repository through an API that is made available inMDF.

5.2 User Interface
The MDF system provides a graphical user interface that helps

user define and customize mappings. The interface displays the
schema tree and corresponding relational tables, allowing users to
visually check the connections between the XML elements and ther
relational counterparts, as well as interactively modify the mapping
specification. Some screendumps of the user interface are shown in
Figure 7.

5.3 Annotation Processor
The annotation processor is in charge of parsing an annotated

XML Schema, checking mapping correctness and losslessness, gen-
erating a mapping repository and producing theCREATE TABLE
statements necessary to construct the relational schema. Correct-
ness checks are performed by a simple algorithm that follows the
definitions given in Section 4.2. More complex analyses are planned
for future versions of the system.

In order to simplify the process of checking for losslessness, the
system provides a set of default rules that will be used tocomplete
mapping specifications. For example, if the user does not specify a
mapping for a portion of the input XML Schema, these default rules
are applied to that portion of the schema. Default mapping rules
have another benefit: they enable the concise definition of mapping
2Our system is currently available upon request.

Figure 7: Screendumps of theMDF GUI

specifications. Mapping every element and attribute definition in an
XML Schema can be tedious, especially for large schemata. Using
default rules frees users from having to annotate each element and
attribute in an XML Schema. Note that our default mapping rules
are not hard-coded in the system; user-defined rules can be added
to or replace the built-in rules.

5.4 Mapping Repository and API
Mapping information is made persistent and an application pro-

gramming interface (API) is provided that gives access to details
of the mapping, such as, how elements and attributes are mapped,
which mapping is used to capture document structure and which
tables are available in the relational schema. Table 2 summarizes
some the functions provided by the API. Making mapping infor-
mation persistent avoids the need re-parse a mapping specification
each time a document is loaded into the target database or that a
query needs to be translated into SQL.

5.5 Document Shredder
The document shredder uses the mapping information to shred

input documents that conform to the mapped schema into tuples
that will populate tables in the target relational schema. Since
mapping annotations are specified using attributes from a differ-
ent namespace, the document shredder can validate the input XML
document against the XML Schema. Tuples are generated while
the document is parsed (using a standard XML parser). In our im-
plementation, we use the SAX interface of Xerces [20], which is
not only is efficient but also scalable. For example, the system was
able to shred and load a 1GB document into a commercial RDBMS
in less than 30 minutes.

Given an element or attribute in the input XML document, the
document shredder is in charge of generating the appropriate tu-
ple, field or CLOB. To do so, it must be aware of the mapping
defined for that element or attribute. The shredder was designed to
be generic and independent from the mapping specification. The
key idea is to use the mapping API in order to retrieve information
about how a particular element or attribute is mapped.

API Function Input Output Semantics
structMap KFO, Interval, Dewey returns which structure mapping is used.
isTable attribute or element

name
true, false determines whether the input has been maed

to a table.
isField attribute or element

name
true, false determines whether the input has been maed

to a field.
isCLOB attribute or element

name
true, false determines whether the input has been maed

to a CLOB.
getTableName attribute or element

name
string returns the name of the table used to map in-

put.
getFieldName attribute or element

name
string returns the name of the field used to map input.

getCLOBName attribute or element
name

string returns the name of the CLOB used to map in-
put.

getTableInfo table name table description returns the table description in the relational
schema.

getFieldInfo field name field description returns the field description in the relational
schema.

getCLOBInfo CLOB name CLOB description returns the CLOB description in the relational
schema.

Table 2: API Functions

Finally, the shredder is flexible and allows users to set various
parameters (e.g., target database system, login information, bulk
loading option) either through the command line or through a con-
figuration file. For more details about the shredded, see [8].

5.6 Query Translator
We developed an XPath-to-SQL query translator that supports

a subset of XPath. Similar to the document shredder, the query
translator is generic and does not hard-code mapping choices, in-
stead it uses the information provided by mapping API to perform
the translation.

The translation algorithm works on a subset of XPath syntax
that includes: descendant/child axis; position based predicate of the
format [position()=n]; and simple path based expression predicate.
The algorithm consists of the following steps:3

Step 1: Resolve wildcards, so that a set of
simple paths is obtained

Step 2: For each simple path, consult the mapping
API and bind XML-to-relational mapping
information to the nodes in the path

Step 3: Generate SQL query for the
annotated path

Step 4: Union the SQL queries (each of
them corresponds to one path)

Step 2 uses some of the API functions, including:isOutlined,
getTableName, getTableNameandgetColumnName. The infor-
mation obtained by these functions enables the translator to dy-
namically decide how to perform the translation. For example, for
a path/IMDB/SHOW/TITLE , if TITLE is inlined intoSHOW, a se-
lection query is generated (i.e., SELECT title FROM SHOW); but if
TITLE is outlined (see Figure 4), a join is generated instead (i.e.,
SELECT title FROM SHOW, Showtitle WHERE SHOW.id = Showti-
tle.ParentID).

6. RELATED WORK
Although XML support in commercial relational engines is im-

proving rapidly [10, 13, 21], the level of support varies widely
across systems. Some practical problems include:

3For more details on the algorithm see [7].

Proprietary solutions:Major commercial systems provide propri-
etary solutions for loading XML documents. For example, the IBM
DB2 XML Extender [10] requires users to write a Document Ac-
cess Definition specification, consequently, developers must learn
a new language in order to use DB2 as a back-end. In addition,
if the same documents need to be loaded under the same mapping
onto multiple databases, the developer will need to learn multiple
mapping schemes and will need to write a different mapping spec-
ification for each.
Lack of flexibility: Although most commercial solutions provide
powerful mapping schemes, some useful mapping strategies are
not supported. For example, in Oracle’s annotated schema, it is
not possible to specify thatpart of the data is to be stored using a
generic mapping such as Edge [9]. In addition, all systems hard-
code the use of KFO (key-foreign key) to map element identity and
document structure.
Scalability: Some loading solutions are not scalable. For example,
SQLServer’s OpenXML requires that XML documents be com-
piled into an internal DOM representation. As a result, the size of
documents that can be loaded is limited by the size of main mem-
ory.

In what follows, we describe the main characteristics of existing
mapping strategies and tools. For a more detailed description, the
reader is referred to [1].

IBM DB2 XML Extender [10] defines the Data Access Defini-
tion (DAD) syntax to specify mappings and proprietary procedures
to shred and build documents. Unlike DB2, we use an annotated
XML Schema. DB2 extender requires that identifiers be present
in the XML document. In order to correctly map repetitions, the
parent element must have a key so that the table created for the re-
peated child can point to its parent’s key. In addition, unlike our
system which is not limited in the size of the documents it can han-
dle, the maximum document size the IBM solution can handle is
1MB, and resulting tables can contain no more that 1024 rows.

Microsoft SQL Server [13] implements Edge, OpenXML and
and XSD, an annotation-based approach. OpenXML compiles XML
documents into DOM and XPath is used to decompose documents
into tables. This approach is flexible but not scalable since the doc-
ument must fit in memory. Besides, it requires the mapping to be
defined through programming. The XSD approach, although based
on annotations, is less expressive thanMDF, e.g.,it does not allow

mapping groups into a table. Furthermore, although SQL Server
handlesEdge, it does not allow to combine it with other mappings.
Overall, the annotation proposed are less expressive than inMDF.

Oracle 9iR2 introduced Oracle XML DB [21] that provides a
default mapping and allows users to customize it by annotating an
XML Schema. In addition, Oracle also provides proprietary func-
tions to shred and recover documents. Oracle has a fixed way of en-
coding document structure and does not support hybrid mappings.
On the other hand, it allows mappings from elements to objects. We
can easily add annotations that use these Oracle-specific features.

The schema adjunct framework described in [19] uses annota-
tions to associate mappings to XML fragments. However, every
entity in the XML Schema has to be explicitly mapped which might
be tedious. In addition, it does not provide the flexibility provided
in our system such as the ability to specify different mappings for
document structure and the ability to express hybrid mappings.

Recently, MXM [2] has been proposed as a declarative mecha-
nism to express XML-to-relational mappings. Our mapping speci-
fication shares the flexibility of MXM while having the advantage
of using an XML Schema syntax.

Bourret et al [4] XML-DBMS, a generic tool for loading XML
documents into relational tables. Although similar in motivation,
there are important distinctions between our framework and XML-
DBMS. The mappings supported by their tools are limited to the
basic, shared, and hybrid techniques described in [16]. In contrast,
MDF provides greater flexibility and is able to express a wide range
of mapping techniques. In addition, an important contribution of
our work is a comprehensive framework for representing mappings
that can be used not only for shredding documents, but also for
query translation.

7. DISCUSSION
In this paper, we presented a novel XML-to-relational mapping

framework and established its utility for building applications that
need to store and query XML data in relational databases. The
framework defines a set of annotations that can be added to an XML
Schema to define both which physical representations to use for the
XML documents, as well as lower-level options. For example,
as illustrated in Section 4.1, the union distribution operation can
be represented as an annotation: by creating new groups for the
elements within the choice construct. One may also use annotations
to specify information at the field level,e.g.,sqltype to specify the
SQL type of a field.

To the best of our knowledge,MDF is the first system that pro-
vides an end-to-end storage and querying solution for XML docu-
ments in relational databases. In addition, one of our main objec-
tives in designing the annotations were to make the system flexible
and able to represent many different mapping strategies. The avail-
ability of the mapping information coupled with the mapping API
makes it easy for applications to use the mapping information. In
fact, MDF can serve as a platform to implement and compare dif-
ferent mappings and query translation algorithms – until now, such
a comparison has not been possible [11].

There is room for many improvements inMDF. In the short term,
we are planning to include: support for target data models other
than relational (e.g.,object-relational) and support for more com-
plex correctness checks.

8. REFERENCES
[1] S. Amer-Yahia. Storage techniques and mapping schemas for

XML. Technical Report TD-5P4L7B, AT&T Labs-Research,
May 2003.

[2] S. Amer-Yahia and D. Srivastava. A mapping scheme and
interface for XML stores. InProc. of WIDM, 2002.

[3] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML
schema to relations: A cost-based approach to XML storage.
In Proc. of ICDE, pages 64–75, 2002.

[4] R. Bourret, C. Bornhvd, and A. P. Buchmann. A generic
load/extract utility for data transfer between XML documents
and relational databases. InWECWIS, pages 134–143, 2000.

[5] A. Deutsch, M. Fernandez, and D. Suciu. Storing
semi-structured data with STORED. InProc. of SIGMOD,
pages 431–442, 1999.

[6] Introduction to the dewey decimal classification. online
computer library center.
http://www.oclc.org/dewey/about/about the ddc.htm.

[7] F. Du. Translating xpath into sql. Technical report,
OGI/OHSU, 2003. Available at
http://www.cse.ogi.edu/ ˜fangdu/xpath.html .

[8] F. Du, S. Amer-Yahia, and J. Freire. XS: A generic schema
based XML shredder. Technical report, OGI/OHSU, 2003.
Available at
http://www.cse.ogi.edu/ ˜fangdu/xsreport.html .

[9] D. Florescu and D. Kossman. Storing and querying xml data
using an rdmbs.IEEE Data Engineering Bulletin,
22(3):27–34, 1999.

[10] IBM DB2 XML Extender.http://www4.ibm.com/software/
data/db2/extenders/xmlext.html.

[11] R. Krishnamurthy, R. Kaushik, and J. F. Naughton.
XML-SQL query translation literature: The state of the art
and open problems. InProc. XSym, 2003.

[12] P. Marron and G. Lausen. On processing XML in ldap. In
Proc. of VLDB, pages 601–610, 2001.

[13] Microsoft support for XML.
http://msdn.microsoft.com/ sqlxml.

[14] S. Paparizos and et al. Timber: A native system for querying
XML. In Proc. of SIGMOD, page 672, 2003. Demonstration.

[15] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas.
Efficient relational storage and retrieval of XML documents.
In Proc. of WebDB, pages 47–52, 2000.

[16] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, and J. Naughton. Relational databases for
querying XML documents: Limitations and opportunities. In
Proc. of VLDB, pages 302–314, 1999.

[17] T. Shimura, M. Yoshikawa, and S. Uemura. Storage and
retrieval of XML documents using object-relational
databases. InProc. of DEXA, pages 206–217, 1999.

[18] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. InProc. of
SIGMOD, pages 204–215, 2002.

[19] S. Vorthmann, J. Robie, and L. Buck. The schema adjunct
framework.http://www.extensibility.com/resources/
saf dec2000.htm, Dec. 2000.

[20] Xerces Java parser 1.4.3.http://xml.apache.org/xerces-j.
[21] Oracle’s XML SQL utility.

http://technet.oracle.com/tech/xml/oracle xsu.
[22] Xsl transformations (xslt).http://www.w3.org/TR/xslt .

